作為電動汽車的“心臟”,動力電池與目前大熱的新能源汽車一樣備受矚目。其中,鋰離子電池因其具有能量密度高、自放電率低、循環效率高,循環壽命長等特點,頗受新能源汽車產業的青睞,市場發展潛力巨大。但目前的鋰離子電池技術尚未成熟,安全性不穩定的問題仍然存在,再加上電池“不定期起火”事故頻現,一直刺激著消費者們的神經,而發展固態電池技術或將成為破解電動車安全問題的新選擇。
固態電解質成趨勢
“現在所使用的鋰離子電池成本較高,技術也不成熟,所產的鋰離子電池存在不少安全隱患。”哈爾濱工業大學教授王振波表示。
據記者了解,近年來大型動力電池事故頻發,很大程度上是由于電池內部使用液態電解質。“是否安全對鋰離子電池儲能來說非常關鍵。”清華大學材料學院副教授李亮亮強調,“目前市場上商用的鋰離子電池一般都采用有機液態電液,它的缺點是易燃燒,還可能滲漏液體,造成環境污染。”
兩個月前在韓國靈巖發生的鋰離子電池設備起火事件似乎印證了這一說法。
“目前選擇使用的液態有機電解液易燃易爆,用固態電解質代替液態電解液,是我們公認可以提升鋰電池安全性能最為有效的方法之一。”中國科學院青島生物能源與過程研究所副研究員董衫木表示。
李亮亮告訴記者:“固態電解質不易燃,還不會產生液態電解液,因此不帶腐蝕性,是解決電池安全性問題的有效方法,也符合未來電池發展的趨勢。”
技術瓶頸難突破
“高安全性是儲能電池應用的基礎和前提,固態化是解決二次電池安全性的最佳途徑。固態鋰電池已進入全球加快布局和研發的階段,很多著名機構都在開發固態鋰電池。”溫兆偉說。
記者了解到,包括韓國三星、日本豐田和我國寧德時代在內的眾多電池和汽車廠商,都加大了固態電池研發投入,目前已有部分電池進入裝車測試階段。盡管前景可期,但由于技術和工藝上的種種問題,發展固態電池的道路絕非一帆風順。
首先,高效的電解質材料體系缺乏。溫兆偉指出,目前固態電池材料發展很快,但綜合應用較為欠缺。“作為固態電池的核心材料,目前在固體鋰離子導體的單一指標上已有所突破,但綜合性能尚不能滿足大規模儲能需求。”對此,董衫木也認為,“現今固態電池采用的固態電解質普遍存在性能短板,距離高性能鋰離子電池系統的要求仍有不小的差距。”
其次,固態電解質和電極的界面處理也是固態電池目前面臨的一大難題。“在固體電解質中鋰離子傳輸阻抗很大,與電極接觸的剛性界面接觸面積小,在充放電過程中電解質體積的變化容易破壞界面的穩定。”李亮亮指出。此外,在固態鋰電池中,除了電解質和電極之間的界面,電極內部還存在復雜的多級界面,電化學以及形變等因素都會導致接觸失效影響電池性能。
再次,長期使用時穩定性不理想也是長壽命儲能固態電池發展的瓶頸。“固態電池在服役過程中結構與界面會隨時間發生退化,但退化對電池綜合性能的影響機制尚不明確,難以實現長效應用。”溫兆偉說。
“固體電池接觸界面的失效行為以及背后的失效機理亟待闡明。” 董衫木也表示,“我認為,構建高性能固態電池需要從兩方面入手,一是構建高性能的固態電解質,二是提高界面的相容性和穩定性。
新技術層出不窮
“針對固態電池,我們要從最基礎的材料、界面、單體,一直到最終的系統模塊進行研究,只有從根本上解決了關鍵材料和界面問題,才能開展系統的工藝研究,從而滿足單電池的性能要求。”溫兆偉對記者說。
而面對發展過程中接連不斷的挑戰,各種新技術“百家爭鳴”。記者日前了解到了一些固態電池技術的最新突破。
比如,在固體電解質材料上,業內發現基于石榴石結構的鋰鑭鋯氧(LLZO)固體電解質體系的固態電池具有優異的循環性能和倍率性能,它也因此成為一大技術熱點。“LLZO是一種性能優異的填料,能夠提高聚合物基復合固態電解質的性能。基于LLZO的固態電池循環1000次后容量仍能保持81%。”李亮亮介紹。
董衫木告訴記者了另一種電解質材料思路——“剛柔并濟”,使用剛性的聚合物骨架和無機顆粒與柔性的聚合物離子傳輸材料融合。“通過聚合物和聚合物之間,以及聚合物和無機顆粒之間的路易斯酸堿相互作用,可為鋰離子傳輸創造新通道,大幅提升電解質的綜合性能。”
而界面處理的研究熱點主要集中在界面設計及修飾層上,目前凝膠化的界面設計已經取得了較好成果。溫兆偉說:“通過凝膠態的聚合物對界面進行修飾,增加接觸面積的同時還可以緩沖循環過程中的體積效應,在室溫下經過300次循環,基本無退化,這樣的結構設計較好的改善了電池性能。”
“除了固態電解質和界面,固態電池一體化設計也非常重要。”李亮亮談及固態電池未來的發展時表示,“因為對儲能、新能源汽車等不同領域來說,需要有針對性的進行電池結構設計。”
“總的來說,對于固態電池的研究,目前還是偏學術多一些,在產業化方面,因為一些關鍵技術涉及到各個企業核心技術而無法獲取,導致基于工程化應用方面的技術還是需要進行進一步探究。”溫兆偉說。
固態電解質成趨勢
“現在所使用的鋰離子電池成本較高,技術也不成熟,所產的鋰離子電池存在不少安全隱患。”哈爾濱工業大學教授王振波表示。
據記者了解,近年來大型動力電池事故頻發,很大程度上是由于電池內部使用液態電解質。“是否安全對鋰離子電池儲能來說非常關鍵。”清華大學材料學院副教授李亮亮強調,“目前市場上商用的鋰離子電池一般都采用有機液態電液,它的缺點是易燃燒,還可能滲漏液體,造成環境污染。”
兩個月前在韓國靈巖發生的鋰離子電池設備起火事件似乎印證了這一說法。
“目前選擇使用的液態有機電解液易燃易爆,用固態電解質代替液態電解液,是我們公認可以提升鋰電池安全性能最為有效的方法之一。”中國科學院青島生物能源與過程研究所副研究員董衫木表示。
李亮亮告訴記者:“固態電解質不易燃,還不會產生液態電解液,因此不帶腐蝕性,是解決電池安全性問題的有效方法,也符合未來電池發展的趨勢。”
技術瓶頸難突破
“高安全性是儲能電池應用的基礎和前提,固態化是解決二次電池安全性的最佳途徑。固態鋰電池已進入全球加快布局和研發的階段,很多著名機構都在開發固態鋰電池。”溫兆偉說。
記者了解到,包括韓國三星、日本豐田和我國寧德時代在內的眾多電池和汽車廠商,都加大了固態電池研發投入,目前已有部分電池進入裝車測試階段。盡管前景可期,但由于技術和工藝上的種種問題,發展固態電池的道路絕非一帆風順。
首先,高效的電解質材料體系缺乏。溫兆偉指出,目前固態電池材料發展很快,但綜合應用較為欠缺。“作為固態電池的核心材料,目前在固體鋰離子導體的單一指標上已有所突破,但綜合性能尚不能滿足大規模儲能需求。”對此,董衫木也認為,“現今固態電池采用的固態電解質普遍存在性能短板,距離高性能鋰離子電池系統的要求仍有不小的差距。”
其次,固態電解質和電極的界面處理也是固態電池目前面臨的一大難題。“在固體電解質中鋰離子傳輸阻抗很大,與電極接觸的剛性界面接觸面積小,在充放電過程中電解質體積的變化容易破壞界面的穩定。”李亮亮指出。此外,在固態鋰電池中,除了電解質和電極之間的界面,電極內部還存在復雜的多級界面,電化學以及形變等因素都會導致接觸失效影響電池性能。
再次,長期使用時穩定性不理想也是長壽命儲能固態電池發展的瓶頸。“固態電池在服役過程中結構與界面會隨時間發生退化,但退化對電池綜合性能的影響機制尚不明確,難以實現長效應用。”溫兆偉說。
“固體電池接觸界面的失效行為以及背后的失效機理亟待闡明。” 董衫木也表示,“我認為,構建高性能固態電池需要從兩方面入手,一是構建高性能的固態電解質,二是提高界面的相容性和穩定性。
新技術層出不窮
“針對固態電池,我們要從最基礎的材料、界面、單體,一直到最終的系統模塊進行研究,只有從根本上解決了關鍵材料和界面問題,才能開展系統的工藝研究,從而滿足單電池的性能要求。”溫兆偉對記者說。
而面對發展過程中接連不斷的挑戰,各種新技術“百家爭鳴”。記者日前了解到了一些固態電池技術的最新突破。
比如,在固體電解質材料上,業內發現基于石榴石結構的鋰鑭鋯氧(LLZO)固體電解質體系的固態電池具有優異的循環性能和倍率性能,它也因此成為一大技術熱點。“LLZO是一種性能優異的填料,能夠提高聚合物基復合固態電解質的性能。基于LLZO的固態電池循環1000次后容量仍能保持81%。”李亮亮介紹。
董衫木告訴記者了另一種電解質材料思路——“剛柔并濟”,使用剛性的聚合物骨架和無機顆粒與柔性的聚合物離子傳輸材料融合。“通過聚合物和聚合物之間,以及聚合物和無機顆粒之間的路易斯酸堿相互作用,可為鋰離子傳輸創造新通道,大幅提升電解質的綜合性能。”
而界面處理的研究熱點主要集中在界面設計及修飾層上,目前凝膠化的界面設計已經取得了較好成果。溫兆偉說:“通過凝膠態的聚合物對界面進行修飾,增加接觸面積的同時還可以緩沖循環過程中的體積效應,在室溫下經過300次循環,基本無退化,這樣的結構設計較好的改善了電池性能。”
“除了固態電解質和界面,固態電池一體化設計也非常重要。”李亮亮談及固態電池未來的發展時表示,“因為對儲能、新能源汽車等不同領域來說,需要有針對性的進行電池結構設計。”
“總的來說,對于固態電池的研究,目前還是偏學術多一些,在產業化方面,因為一些關鍵技術涉及到各個企業核心技術而無法獲取,導致基于工程化應用方面的技術還是需要進行進一步探究。”溫兆偉說。